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FLUID MECHANICS II 

 

 

 Subject الموضوع ت
عدد 

 الساعات
Week 

 Basics of compressible flow 3 1 اساسيات الجريان الأنضغاطي 1

 Isentropic flow 4 2 الجريان الأيزنتروبي 2

 
الجريان الأيزنتروبي في مقطع متغير 

 المساحة

Isentropic flow through variable area 

duct 
6 3-4 

 Normal shock wave 3 5 الموجة الصدمية العمودية 3

 Oblique shock wave 3 7 الموجة الصدمية المائلة 4

 Prandtl Meyer Function 3 8 ماير -دالة براندل 5

 Adiabatic flow (Fanno flow) 4 9 )جريان فانو(  الجريان الأديباتيكي 6

 Jet propulsion- Rocket engine 3 10 المحرك الصاروخي–الدفع النفاث  7

 Turbojet engine 6 10-11 المحرك التوربيني النفاث  

 
المحرك التوربيني النفاث مزدوج 

 التيار
Twin spool turbojet engine 6 12-13 

8 
النوع الدفعي  -التوربينات المائية

 )توربين بلتون(

Water turbines -Impulse type- Pelton 

wheel 
3 14-15 

 Reaction type- Francis Turbine 4 16-17 توربين فرانسس -النوع التفاعلي 

 Reaction type- Kaplan Turbine 4 18 توربين كابلان -النوع التفاعلي 

 Homologous rules 4 19 يعلاقات التشابه الهندس 9

 Centrifugal pumps and fans 6 20-21 المضخات و المراوح المركزية 10

 Cavitations in pumps 3 22 ظاهرة التكهف في المضخات 

 Axial compressor 6 23-24 الضواغط المحورية 11

 Centrifugal compressor 3 25-26 المركزية الضواغط 12

 Axial gas turbine 6 27-28 التوربينات الغازية المحورية 13

 Centrifugal gas turbine 3 29-30 مركزيةالتوربينات الغازية ال 14
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Books: 

1-" Fluid Mechanics" Victor L. Streeter 

2-"Fundamentals of Fluid mechanics" Brunce Munson 

4- "Gas Turbine Theory" H. Cohen 

 "ميكانيك الموائع" د. كامل الشماع-5

 

 

 

Compressible Flow 

 
Compressible flow is the study of fluids flowing at speeds comparable to the local 

speed of sound. This occurs when fluid speeds are about 30% or more of the local 

acoustic velocity. Then, the fluid density no longer remains constant throughout the 

flow field. This typically does not occur with fluids but can easily occur in flowing 

gases. Two important and distinctive effects that occur in compressible flows are (1) 

choking where the flow is limited by the sonic condition that occurs when the flow 

velocity becomes equal to the local acoustic velocity and (2) shock waves that 

introduce discontinuities in the fluid properties and are highly irreversible. Since the 

density of the fluid is no longer constant in compressible flows, there are now four 

dependent variables to be determined throughout the flow field. These are pressure, 

temperature, density, and flow velocity. Two new variables, temperature and density, 

have been introduced and two additional equations are required for a complete 

solution. These are the energy equation and the fluid equation of state. These must be 

solved simultaneously with the continuity and momentum equations to determine all 

the flow field variables. 

 

We need to do review for some thermodynamic relations: 

Equation of state           P=ρ R T,      
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h= u + pv = u + RT 

dh= du +R dT 

Cp dT=Cv dT + R dT       →   Cp = Cv + R 
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The first law of thermodynamic: 
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For reversible, adiabatic process (Isentropic), ΔS = 0.0 →  
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Stagnation Condition 

 
Recall definition of enthalpy 

 
which is the sum of internal energy u and flow energy P/ 

For high-speed flows, enthalpy and kinetic energy are combined into stagnation enthalpy ho 

 

 
 

Steady adiabatic flow through duct with no shaft/electrical 

work and no change in elevation and potential energy 

 

 
Therefore, stagnation enthalpy remains constant during 

steady-flow process 

 

 

o If a fluid were brought to a complete stop (V2 = 0) → 

 

o Therefore, h0 represents the enthalpy of a fluid when it is brought to rest adiabatically. 

o During a stagnation process, kinetic energy is converted to enthalpy. 

o Properties at this point are called stagnation properties (which are identified by subscript 

o) 

 

 

   - Stagnation enthalpy is the same for isentropic and 

actual stagnation states 

 

    - Actual stagnation pressure Po,act is lower than Po due 

to increase in entropy s as a result of fluid friction. 

 

     -Nonetheless, stagnation processes are often 

approximated to be isentropic, and isentropic properties are 

referred to as stagnation properties 
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o For an ideal gas, h = CpT, which allows the h0 to be rewritten 
 

 

 

 

 

o To is the stagnation temperature.  It represents the temperature an ideal 

gas attains when it is brought to rest adiabatically. 

 

o V
2
/2Cp corresponds to the temperature rise, and is called the dynamic 

temperature. 

 

 

Speed of sound 
 

o Consider a duct with a moving piston 

o Creates a sonic wave moving to the right 

o Fluid to left of wave front experiences incremental change in properties 

o Fluid to right of wave front maintains original properties 

o Construct CV that encloses wave front and moves with it 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuity equation (Mass 

Balance) 
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Energy Equation (Energy balance) 

Ein = Eout 

 

 

 
From thermodynamic relations: 

Tds=dh-vdp 

ds=0   

→ dh=dp/ρ 
Combining this with mass and energy equations gives: 

 
 

 
Speed of sound for Gases 

 

From ideal gas relation (equation of state p = ρRT) 

   
  

 

 

 
Speed of sound for Liquids 




d

dp
E   Bulk modulus of compression 

  



E
c   
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Mach waves (M = V/C) 

                    

Small disturbances created by a slender body in a supersonic flow will propagate 

diagonally away as Mach waves. These consist of small isentropic variations in ρ, V, 

p, and h, and are loosely analogous to the water waves sent out by a speedboat. Mach 

waves appear stationary with respect to the object generating them, but when viewed 

relative to the still air, they are in fact indistinguishable from sound waves, and their 

normal-direction speed of propagation is equal to a, the speed of sound.  

 
 
 

The angle μ of a Mach wave relative to the flow direction is called the Mach angle. It 

can be determined by considering the wave to be the superposition of many pulses 

emitted by the body, each one producing a disturbance circle (in 2-D) or sphere (in 3-

D) which expands at the speed of sound a. At some time interval t after the pulse is 

emitted, the radius of the circle will be at, while the body will travel a distance Vt. 

The Mach angle is then seen to be  

 

               
M

1
tan

Vt

ct
tan 11    

which can be defined at any point in the flow. In the subsonic flow case where M = 

V/a < 1 the expanding circles do not coalesce into a wave front, and the Mach angle 

is not defined.  
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ISENTROPIC FLOW 
 

When the flow of an ideal gas is such that there is no heat transfer (i.e., adiabatic) or 

irreversible effects (e.g., friction, etc.), the flow is isentropic. The steady-flow energy 

equation applied between two points in the flow field becomes 

 

ℎ1 +
𝑉1
2

2
= ℎ2 +

𝑉2
2

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 

From thermodynamic relation 

          

and     h = Cp T ,  ho = CpTo 
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Po=500 kPa, To=400 K (Stagnation conditions) 

 

 

 

 

 

M=0.469 

   

 

 

T=383K 

 

3/91.3
)383)(287(

000,430
mkg

RT

P
  

smkRTMV /184383*287*4.1469.0   

 

 

 

 

 

 

 

Example: Air is flowing isentropically through a 

duct is supplied from a large supply tank in which 

the pressure is 500 kPa and temperature 400 K. 

What are the Mach number, the temperature, 

density and fluid velocity v at a location in this duct 

where the pressure is 430 kPa  
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Critical (Sonic ) Condition 

 
The values of the ideal gas properties when the Mach number is 1 (i.e., sonic flow) 

are known as the critical or sonic properties and are given by: 
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Both the critical (sonic, Ma = 1) and stagnation values of properties are useful in 

compressible flow analyses. 

 

Flow Through Varying Area Duct 

 
Such flow occurs through nozzles, diffusers, and turbine blade passages, where flow 

quantities vary primarily in the flow direction. This flow can be approximated as 1D 

isentropic flow. 

 

Continuity 

 

 

 
 

Derived relation (on image at right) is the 

differential form of Bernoulli’s equation (Euler 

equation) and combining this with speed of sound 

gives: 

dV
C

Vd

VdV
d

C

2

2
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Substitute the result in continuity equation: 

0
V
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A
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V
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
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



 1

C

V

V
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 12  M
V

A

dV

dA
 

 

For subsonic flow (M < 1)  dA/dV < 0 

For supersonic flow (M > 1) dA/dV > 0 

For sonic flow (M = 1)  dA/dV = 0 

 
Application: Converging or converging-

diverging nozzles are found in many 

engineering applications 

Steam and gas turbines, aircraft and 

spacecraft propulsion, industrial blast 

nozzles, torch nozzles 

 

Flow Cases in Converging 

Diverging Nozzle 

 
1-: Po > Pe > Pc 

Flow remains subsonic, and mass 

flow is less than for choked flow.  

Diverging section acts as diffuser 

 

2-: Pe = Pc 

Sonic flow achieved at throat.  

Diverging section acts as diffuser.  

Subsonic flow at exit.  Further 

decrease in Pb has no effect on 

flow in converging portion of 

nozzle 

 

3-:Pc > Pe > PE 

Fluid is accelerated to supersonic 

velocities in the diverging section 

as the pressure decreases.  

However, acceleration stops at 

location of normal shock.  Fluid 

decelerates and is subsonic at 

outlet.  As Pe is decreased, shock 

approaches nozzle exit. 
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PE > Pe > 0 

Flow in diverging section is supersonic with no shock forming in the nozzle.  Without 

shock, flow in nozzle can be treated as isentropic. 

 

Flow Cases in Converging (Truncated) Nozzle 

The highest velocity in a converging nozzle is limited to the sonic velocity (M 

= 1), which occurs at the exit plane (throat) of the nozzle 

Accelerating a fluid to supersonic velocities (M > 1) requires a diverging flow section 

Forcing fluid through a C-D nozzle does not 

guarantee supersonic velocity, It requires proper 

back (exit) pressure Pe 

 

 

 State 1:  Pb = Po, there is no flow, and 

pressure is constant. 

 State 2: Pb < P0, pressure along nozzle 

decreases. 

 State 3: Pb =P* , flow at exit is sonic, 

creating maximum flow rate called choked 

flow. 
 State 4: Pb < Pb, there is no change in flow 

or pressure distribution in comparison to 

state 3 

 State 5: Pb =0, same as state 4. 
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To Find the Critical Area: 
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The Maximum Mass Flow Rate 
  

If the sonic condition does occur in the duct, it will occur at the duct minimum area. 

If the sonic condition occurs, the flow is said to be choked since the mass flow rate is 

maximum (𝑚̇𝑚𝑎𝑥) which is defined as the maximum mass flow rate the duct can 

accommodate without a modification of the duct geometry. 
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Ex: The reservoir conditions of air entering a converging-diverging nozzle are 100 

kPa and 300 K. Mach number at exit equals to 3.0 and the mass flow rate is 1.0 kg/s. 

Determine: (a) throat area (b) the exit area and (c) the air conditions at exit section.   

 

o

*

o
max

RT

AP686.0
m   

)300(287

)1000,100(A686.0
m

*

max   

  

= 0.00428m
2 

)1k(2

1k

1k

M)1K(2

M

1

A

A
2

e

*

e



















 

=4.234 

Ae=0.0181m
2 

 

From tables
 
at M=3.0 , (Pe/Po)=0.027, (Te/To)=0.357 

 

Pe=2.7 kPa, Te=107.1K 

 

Ρe=Pe/(RTe)=0.088 kg/m
3
 

 

 

Shock waves 
Under the appropriate conditions, very thin, highly irreversible discontinuities can     

occur in otherwise isentropic compressible flows. These discontinuities are known as 

shock waves. Flow process through the shock wave is highly irreversible and cannot 

be approximated as being isentropic. Shocks that occur in a plane normal to the 

direction of flow are called normal shock waves, some are inclined to the flow 

direction, and are called oblique shocks. 

 

 

Normal Shock Wave 
Developing relationships for flow properties 

before and after the shock using 

conservation of mass, momentum, and 

energy: 

 

 

Conservation of mass 

 

Po 
To 

At 

Me=3.0 

e 
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   ------------(1) 

Conservation of momentum 

-------------(2) 

 

Conservation of energy 

 

2

V
TC

2

V
TC

2

2
2p

2

1
1p     -----------(3) 

Now, from equ(2), P2=P1+ρ1V1
2 
–ρ2V2

2
      -----(4) 

Equ(1) into (4) : P2=P1+ρ1V1
2 
–ρ2V1V2          -----(5) 

 

Substitute on ρ2 from equ(1) into equ(2) 
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By substituting V2 from equ (5) into equ(6), we obtain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When using these equations to relate conditions upstream and downstream of a 

normal shock wave, keep the following points in mind: 
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1. Upstream Mach numbers are always supersonic while downstream Mach numbers 

are subsonic.  

2. Stagnation pressures and densities decrease as one moves downstream across a 

normal shock wave while the stagnation temperature remains constant (a 

consequence of the adiabatic flow condition). 

3. Pressures increase greatly while temperature and density increase moderately 

across a shock wave in the downstream direction. 

4. The critical/sonic throat area changes across a normal shock wave in the 

downstream direction and A2* A1* 
. 

5. Shock waves are very irreversible causing the specific entropy downstream of the 

shock wave to be greater than the specific entropy upstream of the shock wave. 

 

 

 

 

 

 

EX: 

A normal shock wave exists in a air flow with upatream 

M=2.0 and a pressure of 20 kPa and temperature of 15
o
C. 

Find the Mach number, preeure, stagnation pressure, 

temperature, stagnation temperature and air velocity 

downstream of the shock wave 

 

From Shock wave table: M2=0.577, (P2/P1)=4.5, 

(T2/T1)=1.688 

(Po2/Po1)=0.721 

 

P2=4.5*20=90 kPa 

T2=1.688*(273+15)=486 K 

M2=V2/C2    V2=0.577[1.4*287*486]
1/2

 =255 m/s 

 

To find P02 and To2  

From Isentropic table 

At M1=2.0, (P1/Po1)=0.128, (T1/To1)=0.556 

Po1=20/0.128 =156.25 kPa 

Po2=0.721*156.25=112.6 kPa 

To1=288/0.556=518 K 

To2=To1=518 K 
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H.W. 

Air is supplied to the converging-diverging nozzle shown here from a large tank 

where P = 2 MPa and T = 400 K. A normal shock wave in the diverging section of 

this nozzle forms at a point where the upstream Mach number is 1.4. The ratio of the 

nozzle exit area to the throat area is 1.6. Determine (a) the Mach number downstream 

of the shock wave, (b) the Mach number at the nozzle exit, and (c) the pressure and 

temperature at the nozzle exit. 

 

 

Oblique shock and expansion waves  

Mach waves can be either compression waves (p2 >p1) or expansion waves (p2 <p1), 

but in either case their strength is by definition very small (|p2 −p1|<<p1). A body of 

finite thickness, however, will generate oblique waves of finite strength, and now we 

must distinguish between compression and expansion types. The simplest body shape 

for generating such waves is  

– a concave corner, which generates an oblique shock (compression), or  

– a convex corner, which generates an expansion fan. The flow quantity changes 

across an oblique shock are in the same direction as across a normal shock, and 

across an expansion fan, they are in the opposite direction. One important difference 

is that po decreases across the shock, while the fan is isentropic, so that it has no loss 

of total pressure, and hence po
2 
= po

1 
 

   

  

  

  

  

  

  

  

  

  

  

  

 At leading edge, flow is deflected through an angle  called the turning angle 

Result is a straight oblique shock wave aligned at shock angle  relative to the flow 

direction 

Due to the displacement thickness,  is slightly greater than the wedge half-angle  .  

 

 

 Like normal shocks, Ma decreases across the oblique shock, and are only 

possible if upstream flow is supersonic 

 However, unlike normal shocks in which the downstream Ma is always 

subsonic, Ma2 of an oblique shock can be subsonic, sonic, or supersonic 

depending upon Ma1 and . 
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β 

β-θ 

 All equations and shock tables for normal shocks apply to oblique shocks as 

well, provided that we use only the normal components of the Mach number 

 

 

 

o M1,n = V1,n/c1=V1sinβ/C1=M1sinβ 

o M2,n=V2,n/c2=V2sin(β-θ)/C2=M2Sin (β-θ) 

 

tanβ=V1,n/V1,t 

tan(β-θ)= V2,n/V2,t 

 

But V2,t=V1,t (there is no pressure  

change in the tangential direction) 

Hence: 

  n,2

n,1

V

V

tan

tan





 

 
  






22

1

22

1

1

2

n,2

n,1

SinM1k2

SinM1k

V

V




  

Hence: 

 
 
  






22

1

22

1

SinM1k2

SinM1k

tan

tan







 

 

Solving the above relation for θ: 
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The oblique shock chart above reveals a number of important features:  

1-There is a maximum turning angle θmax for any given upstream Mach number M1. 

If the wall angle exceeds this, or θ>θmax, no oblique shock is possible. Instead, a 

detached shock forms ahead of the concave corner. Such a detached shock is in fact 

the same as a bow shock discussed earlier.  

2-If θ<θmax, two distinct oblique shocks with two different β angles are physically 

possible. The smaller β case is called a weak shock, and is the one most likely to 

occur in a typical supersonic flow. The larger β case is called a strong shock, and is 

unlikely to form over a straight-wall wedge. The strong shock has a subsonic flow 

behind it.  

3-The strong-shock case in the limit θ → 0 and θ → 90
o

, in the upper-left corner of 

the oblique shock chart, corresponds to the normal-shock case.  
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Ct 

Prandtle-Meyer Waves 

An expansion fan, sometimes also called a Prandtl-

Meyer expansion wave, can be considered as a 

continuous sequence of infinitesimal Mach 

expansion waves. To understand the analysis clearly, 

we shall back to explain Mach cone or Mach wave. 

 

sinµ=Ct/Vt=1/M 

or µ=sin
-1

(1/M) 

 

 

 

To analyze this continuous change, we will now consider the flow angle θ to be a 

flow field variable, like M or V . 

Across each Mach wave of the fan, the flow direction changes by d_, while the speed 

changes by dV . Oblique-shock analysis dictates that only the normal velocity 

component u can change across any wave, so that dV must be entirely due to the 

normal-velocity change du. 
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Prandtle-Meyer Function 

The differential equation (1) can be integrated if we first express V in term of M. 

2

1

2

o M
2

1k
1MCMCV










 
  









 2

o M
2

1
ClnMlnVln

2

1-k
1  

Differentiation the above relation: 

dMM2
2

1k
M

2

1k
1

2

1

M

dM

V

dV
1

2 







 




 

 

M

dM

M
2

1k
1

1

V

dV

2


  

 

Equation (1) then becomes: 

 

M

dM

M
2

1k
1

1M
d

2

2





  (2) 

 

which can now be integrated from point 1 to any point 2 in the Prandtle-Meyer wave 

 

  





2

1

2

1

M

M
2

2

M

dM

M
2

1k
1

1M
d






 

  )M()M( 1212  (3)  

Where   1Mtan1M
1k

1k
tan

1k

1k
)M( 2121 








   (4) 

 

θ: is the total turning of the corner 

 

Here ν(M) is called the Prandtle-Meyer function, and is shown plotted  for k=1.4 

 

Equation (3) can be applied to any two points within an expansion fan, but the most 

common use is to relate the two flow conditions before and after the fan. Reverting to 

our previous notation where θ is the total turning of the corner, the relation between θ 

and the upstream and downstream Mach number is 
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Fan angle=μ1-[μ2-θ] 
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Adiabatic Flow 
All the isentropic flow relations can be used through the adiabatic flow, in any 

section, provided that all variables of the relation refer to the same section. 

 

 

 

 

 

 

 

 

 

 

Find A
*
1, and A

*
2 : 

o

*

o
max

RT

AP686.0
m   

Hence  

1o

omax*

1
P686.0

RTm
A


  (1) 

 

2o

omax*

2
P686.0

RTm
A


  (2) 

divide (1) by (2) 

 

We got: 

A
*
1Po1=A

*
2Po2 

 

Generally 

Through adiabatic flow: 

 

A
*
1Po1=constant 

 

 

Ex: 

A constant area adiabatic duct has the following conditions of air flow: At section 1, 

the pressure P=0.8 bar, T=350K, air velocity=160 m/s. At section 2, Mach 

number=0.5, Find P, T, V at section 2. 

 

 

 

 

 

1 

Po 
To 

Adiabatic flow 

Choked Throat 

Isentropic flow 

A, A
*
 

M 

P, Po 

T 

2 
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Sol. 

 

A
*
1Po1=A

*
2Po2 

 

426.0
350*287*4.1

160

kRT

V
M 1

1   

 

 

 

 

Po1=80(1+0.2(0.426)
2
)

3.5
=90.632 

 

511.1
1k

M)1K(2

M

1

A

A
)1k(2

1k

2

1

1

*

1

1 

















 

 

A2/A
*
2=1.34 

 

Hence: (A1/1.511)*90.632=(A2/1.34)*P o2 

Po2=80.3 kPa 

 

 

 

 

P2=80.3/1.1863=67.7 

To2=To1=T1(1+0.2(0.426)
2
)=362.7K 

T2=345.4K 

V2=186.3m/s 

 

 

 

1 2 

P=80kPa 

T=350K 

V=160m/s 

M=0.5 

1k

k

2

1

1

1o M
2

1k
1

P

P 








 


1k

k

2

2

2

2o M
2

1k
1

P

P 








 



